How to Evaluate Functions at a Value Using the Rules

- Identify the independent variable in the rule of function.
- Replace the independent variable with big parentheses.
- Plug in the input that needs to be evaluated inside the big parentheses.

1. Evaluate the function $f(x)=5 x^{2}-2 x+1$ for $x=-2$. (Watch Video 1.)

Solution: $f(-2)=5(-2)^{2}-2(-2)+1=25$
2. Evaluate the function $f(x)=5 x^{2}-2$ for $x=-2$. (Watch Video 2.)

Solution: $f(-2)=5(-2)^{2}-2=18$
3. Evaluate the function $f(x)=2 x^{2}-4 x$ for $x=b-1$. (Watch Video 3.)

Solution: $f(b-1)=2(b-1)^{2}-4(b-1)=2\left(b^{2}-2 b+1\right)-4(b-1)=2 b^{2}-8 b+6$
4. Evaluate the function $g(t)=2 t^{2}-2$ for $t=a+h$. (Watch Video 4.)

Solution: $g(a+h)=2(a+h)^{2}-2=2\left(a^{2}+2 a h+h^{2}\right)-2=2 a^{2}+4 a h+2 h^{2}-2$
5. Evaluate the function $v(t)=2 t+5$ for $t=a+h$. (Watch Video 5.)

Solution: $f(a+h)=2(a+h)+5=2 a+2 h+5$
6. Evaluate the function $g(t)=10 t-2$ for $t=d-2$. (Watch Video 6.)

Solution: $g(d-2)=10(d-2)-2=10 d-22$
7. Evaluate the function $f(x)=10 x+2$ for $x=t+2$. (Watch Video 7.)

Solution: $f(t+2)=10(t+2)+2=10 t+22$
8. Evaluate the function $f(y)=\frac{10 y-1}{y}$ for $y=c+2$. (Watch Video 8.)

Solution: $f(c+2)=\frac{10(c+2)-1}{(c+2)}=\frac{10 c+19}{c+2}$
9. Evaluate the function $f(y)=\frac{5 y+2}{5 y-2}$ for $y=m+k$. (Watch Video 9.)

Solution: $f(m+k)=\frac{5(m+k)+2}{5(m+k)-2}=\frac{5 m+5 k+2}{5 m+5 k-2}$
10. Evaluate the function $h(s)=5-s-\frac{1}{2} s^{2}$ for $s=j-2$. (Watch Video 10)

Solution: $h(c+2)=5-(j-2)-\frac{1}{2}(j-2)^{2}=5-j+2-\frac{1}{2}\left(j^{2}-4 j+4\right)=(5+2-$
2) $+(-j+2 j)-\frac{1}{2} j^{2}=5+j-\frac{1}{2} j^{2}$

Solving Equations with Multiple Parameters: Precalculus Version)

If the desired variable only appears to power of one, then follow the following process.
Isolate the Variable: First manipulate both sides so that each side clearly consists of different terms. For example, if one or both sides are quotient expressions, multiply both sides by each factor in denominator, Multiply all factors through and eliminate square roots. Add or subtract terms on both sides of the equation, make all terms on one sides contain the desirable variable and all terms on the other side do not contain that variable.

Factor the Variable: If the desirable variable still appears to power one only, you can factor the variable on one side.

Divide: Divide both sides by what multiplied the desirable variable.

1. Solve $P=S-S r t$ for r. (Watch Video 11.)

Solution:

Isolate the Variable: $S r t=S-P$
Factor the Variable: $r(S t)=S-P$
Divide: $r=\frac{S-P}{S t}$
2. Solve $2 r x+7=9(r-x)$ for x. (Watch Video 12.)

Solution:

Isolate the Variable:

$2 r x+7=9 r-9 x \Longrightarrow 2 r x+9 x=9 r-7$
Factor the Variable: $x(2 r+9)=9 r-7$
Divide: $x=\frac{9 r-7}{2 r+9}$
3. Solve $\frac{1}{f}=\frac{2}{d_{0}}+\frac{7}{d_{1}}$ for f. (Watch Video 13.)

Solution:

Isolate the Variable: $\mathcal{M u l t i p l y}$ by $f d_{0} d_{1}$: $d_{0} d_{1}=2 f d_{1}+7 f d_{0}$.
Factor the Variable: $d_{0} d_{1}=f\left(2 d_{1}+7 d_{0}\right)$
Divide: $f=\frac{d_{0} d_{1}}{7 d_{0}+2 d_{1}}$
Also acceptable for Gaterway Exam is: $f=\frac{1}{\frac{2}{d_{0}}+\frac{7}{d_{1}}}$
4. Solve $2 a x-7 d=b(x-a)$ for x. (Watch Video 14.)

Solution:

Isolate the Variable:
$2 a x-7 d=b x-a b \Longrightarrow 2 a x-b x=7 d-a b$
Factor the Variable: $x(2 a-b)=(7 d-a b)$
Divide: $x=\frac{(7 d-a b)}{(2 a-b)}$
5. Solve $v=\frac{d+e}{1+\frac{d e}{c^{2}}}$ for e. (Watch Video 16.)

Solution:

Isolate the Variable:
$v\left(1+\frac{d e}{c^{2}}\right)=d+e \Longrightarrow v+\frac{d e v}{c^{2}}=d+e$
$\frac{d e v}{c^{2}}-e=d-v$
Factor the Variable:
$e\left(\frac{d v}{c^{2}}-1\right)=d-v$

Divide:

This is good enough for gateroay: $e=\frac{d-v}{\left(\frac{d v}{c^{2}}-1\right)}$ or $e=\frac{c^{2}(d-v)}{d v-c^{2}}$
6. Solve $x+y=\sqrt{x^{2}+y^{2}+7}$ for y. (Watch Video 17.)

Solution:

Isolate the Variable:

Eliminate the radical: $(x+y)^{2}=x^{2}+y^{2}+7$
Binomial Expansion $\underline{\text { Subfract }}_{x^{2}}+\stackrel{\text { Subtract }}{y^{2}}+2 x y={\underset{\text { Subtract }}{ }}_{x^{2}}^{\text {Subtract }} \widetilde{y^{2}}+7$
$\Longrightarrow 2 x y=7$
Factor the variable: $y(2 x)=7$
Divide: $y=\frac{7}{2 x}$
7. Solve $Q_{\omega}=m_{\omega} c_{\omega}\left(T_{f}-T_{\omega}\right)$ for T_{w}. (Watch Video 18.)

Solution:

Isolate the Variable:
Multipyy through
$\underset{\text { Add and subtract }}{\Longrightarrow} Q_{\omega}=m_{\omega} c_{\omega} T_{f}-m_{\omega} c_{\omega} T_{\omega}=m_{\omega} c_{\omega} T_{f}-Q_{\omega}$
Factor the Variable:
$T_{\omega}\left(m_{\omega} c_{\omega}\right)=m_{\omega} c_{\omega} T_{f}-Q_{\omega}$
Divide:
$T_{\omega}=\frac{m_{\omega} c_{\omega} T_{f}-Q_{\omega}}{m_{\omega} c_{\omega}}$
8. Solve $y-y_{1}=m\left(x-x_{1}\right)$ for x. (Watch Video 19.)

Solution:

Isolate the Variable:
$y-y_{1}=m x-m x_{1} \Longrightarrow m x=y-y_{1}+m x_{1}$
Factor the Variable: $x(m)=y-y_{1}+m x_{1}$
Divide: $x=\frac{y-y_{1}+m x_{1}}{m}$
9. Solve $y-y_{1}=m\left(x-x_{1}\right)$ for y.

Solution:

Isolate the Variable:
$y-y_{1}=m x-m x_{1} \Longrightarrow y=y_{1}+m x-m x_{1}$
Factor the Variable:
Done already: $y=y_{1}+m x-m x_{1}$
Divide:
$y=y_{1}+m x-m x_{1}$
10. Solve $\frac{x}{a}+\frac{y}{b}=1$ for x. (Watch Video 21.)

Solution:

Isolate the Variable:
$\frac{x}{a}=1-\frac{y}{b}$
Factor the Variable:
$x\left(\frac{1}{a}\right)=1-\frac{y}{b}$
Divide:

$$
x=a-\frac{a y}{b}
$$

11. Solve $\frac{1}{x}+\frac{1}{y}=1$ for y. (Watch Video 22.)

Solution:

Isolate the Variable:
$\frac{1}{y}=1-\frac{1}{x}$
Solve for the variable:
$y=\frac{1}{1-\frac{1}{x}}$
Simplify:

$$
\begin{aligned}
& y=\frac{1}{\frac{x-1}{x}} \\
& y=\frac{x}{x-1}
\end{aligned}
$$

Substitution Method for solving Equations. (Precalaculus version.)

Common Factors: Look for common factors to factor into simpler factors.
Relationship Between Exponents: Find if one of the exponents is twice or three times the other one. If there are two terms with variables and one exponent is twice the other one, expect a quadratic equation after substitution.

Substitution: The original variable to the smaller exponent becomes the New Variable.

Use one of the Types: At this point expect a quadratic or of the form $A^{2}-B^{2}$ or $A^{3} \pm B^{3}$. Use quadratic formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ or the difference of squares formula $A^{2}-B^{2}=(A-B)(A+B)$ or the sum or difference of cubes formula $A^{3} \pm$ $B^{3}=(A \pm B)\left(A^{2} \mp A B+B^{2}\right)$ to factor.

Factoring and/or Solving for the New Variable: Use each factor including any that may have been obtained in the first step and SOLVE for the New Variable.

Replace Back the Original Variable: For each value that you found, for the new variable, solve for the original variable. List all solutions with comma between them. In case no solution was possible, write NO SOLUTION. On Gateway exam, give all exact solutions (square roots, fractions and so on.) Values such as 2^{5} is accepted as well.

Eliminate Extraneous Solutions: Plug back in the original equation and eliminate any extraneous solution that has been generated in the process.

1. Solve $x^{\frac{1}{3}}+7 x^{\frac{1}{6}}-18=0$ for x. (Watch Video 23.)

Solution:

Common Factors: This one doesn't have an obvious common factor. Relationship Between Exponents: $\frac{1}{3}=2\left(\frac{1}{6}\right)$. So $x^{\frac{1}{3}}=\left(x^{\frac{1}{6}}\right)^{2}$.
Substitution: Let $y=x^{\frac{1}{6}}$. Replace $y^{2}+7 y-18=0$.
Use one of the Types: This can be factored casily but also the guadratic formula works.

Factoring and/or Solving for the New Variable: By guadratic formula, roots are: $y=\frac{-7 \pm \sqrt{7^{2}-4(1)(-18)}}{2(1)}=\nearrow_{\substack{y_{1}=2 \\ y_{2}=-9}}$.
Replace Back the Original Variable: $\quad x^{\frac{1}{6}}=2 \quad \checkmark$ and $\quad x^{\frac{1}{6}} \underset{\Downarrow}{\Downarrow}=-9$

$$
x=2^{6}=64 \quad \text { No solution for this one }
$$

x

2. Solve $(h-1)^{\frac{1}{3}}-4(h-1)^{\frac{1}{6}}+3=0$ for h.

Solution:

Common Factors: This one doesn't have an obvious common factor.
Relationship Between Exponents: $\frac{1}{3}=2\left(\frac{1}{6}\right)$. So $(h-1)^{\frac{1}{3}}=\left((h-1)^{\frac{1}{6}}\right)^{2}$.
Substitution: $y^{2}-4 y+3=0$
Use one of the Types: By guadratic formula.
Factoring and/or Solving for the New Variable:

$$
y=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(3)}}{2(1)}=\nearrow_{y_{2}=1}^{y_{1}=3} .
$$

Replace Back the Original Variable:

$$
\begin{array}{cc}
y_{1}=3 & y_{2}=1 \\
\Downarrow & \Downarrow \\
(h-1)^{\frac{1}{6}}=3 & (h-1)^{\frac{1}{6}}=1 \\
\Downarrow & \Downarrow \\
h-1=729 & h-1=1 \\
\Downarrow & \Downarrow \\
h=730 & h=2
\end{array}
$$

Eliminate Extraneous Solutions:

None!
3. Solve $18 x^{\frac{1}{2}}=x+81$ for x.

Solution:

Common Factors: None.
Relationship Between Exponents: $1=2\left(\frac{1}{2}\right) \Longrightarrow x=\left(x^{\frac{1}{2}}\right)^{2}$
Substitution: $y=x^{\frac{1}{2}} \Longrightarrow y^{2}=x$ So the original equation becomes $18 y=y^{2}+81$.
Use one of the Types: Quadratic formula for $y^{2}-18 y+81=0$
Factoring and/or Solving for the New Variable:
$y^{2}-18 y+81=0 \Longrightarrow y=9$ repeated root.
Replace Back the Original Variable:
$y=x^{\frac{1}{2}} \Longrightarrow x^{\frac{1}{2}}=9 \Longrightarrow x=81 \checkmark$
Eliminate Extraneous Solutions: None!
4. Solve $15 z^{\frac{3}{2}}+29 z^{\frac{5}{2}}-14 z^{\frac{7}{2}}=0$ for z, in the complex numbers domain. (Watch Video 24.)

Solution:

Common Factors: Factor $z^{\frac{3}{2}}$ to get: $z^{\frac{3}{2}}\left(15+29 z-14 z^{2}\right)=0 \Longrightarrow z^{\frac{3}{2}}=0 \Longrightarrow$ $z_{1}=0$
No substitution is needed.
Use one of the Types: \&uadratic formula since a guadratic equation is a factor.
Factoring and/or Solving: Use guadratic equation to find two more solutions: Order the terms from highest exponent to lowest exponent to find the coefficients:
$\underbrace{-14}_{a} z^{2}+\underbrace{29}_{b} z+\underbrace{15}_{c}=0$.
Use the formula: $z=\frac{-29 \pm \sqrt{29^{2}-4(-14)(15)}}{2(-14)}=$

$$
z_{2}=\frac{5}{2}
$$

$\$

$$
z_{3}=\frac{-3}{7} \text { for the complex numbers domain }
$$

Eliminate Extraneous Solutions: $z_{3}=\frac{-3}{7}$ is not in the domain for real numbers. (The real domain is all positive numbers because of the $\sqrt{ }$. z_{3} is a solution if we consider the complex numbers domain.)
5. Solve $z^{\frac{7}{2}}-4 z^{\frac{5}{2}}=-4 z^{\frac{3}{2}}$ for z.(Watch Video 27.)

Solution:

Common Factors: Factor $z^{\frac{3}{2}}$ to get: $z^{\frac{3}{2}}\left(z^{\frac{4}{2}}-4 z^{\frac{2}{2}}+4 z^{\frac{0}{2}}\right)=0$
$\Longrightarrow z^{\frac{3}{2}}\left(z^{2}-4 z+4\right)=0 \Longrightarrow z^{\frac{3}{2}}=0 \Longrightarrow z_{1}=0$
No substitution is needed.
Use one of the Types: Quadratic formula since a gradratic equation is a factor.
Factoring and/or Solving: Use guadratic equation to find two more solutions:
Order the terms from highest exponent to lowest exponent to find the coefficients:
${\underset{a}{a}}_{z^{2}}+\underbrace{-4}_{b} z+\underset{c}{4}=0$.
Use the formula: $z=\frac{4 \pm \sqrt{(-4)^{2}-4(1)(4)}}{2(1)}=2$ J
Eliminate Extraneous Solutions: None!
6. Solve $-10 z^{\frac{1}{2}}+41 z^{\frac{3}{2}}-21 z^{\frac{5}{2}}=0$ for z.(Watch Video 24.)

Solution:

Common Factors: Factor $z^{\frac{1}{2}}$ to get: $z^{\frac{1}{2}}\left(-10+41 z-21 z^{2}\right)=0 \Rightarrow z^{\frac{1}{2}}=$ $0 \Longrightarrow z_{1}=0$
No substitution is needed.
Use one of the Types: \&uadratic formula since a guadratic equation is a factor.
Factoring and/or Solving: Use guadratic equation to find two more solutions: Order the terms from highest exponent to lowest exponent to find the coefficients:
$\underbrace{-21}_{a} z^{2}+\underbrace{41}_{b} z-\underbrace{10}_{c}=0$.

Use the formula: $z=\frac{-41 \pm \sqrt{41^{2}-4(-21)(-10)}}{2(-21)}=\nearrow \begin{aligned} & z_{2}=\frac{5}{3} \\ & z_{3}=\frac{2}{7} \\ & \checkmark\end{aligned}$

Eliminate Extraneous Solutions: There is none.

7. Solve $\left(2 x^{2}-7\right)^{3}-\left(2 x^{2}-7\right)=0$ for x. (Watch Video 29.) (Watch Video 29.)

Solution:

Common Factors: $\left(2 x^{2}-7\right)\left(\left(2 x^{2}-7\right)^{2}-1\right)=0 \Longrightarrow 2 x^{2}-7=0 \Longrightarrow$
$x^{2}=\frac{7}{2} \Longrightarrow x= \pm \sqrt{\frac{7}{2}}$
Use one of the Types: We are solving $\left(\left(2 x^{2}-7\right)^{2}-1\right)=0$ so we can use factoring the difference of squares: $A^{2}-B^{2}=(A-B)(A+B)$.
Factoring and/or Solving:

$$
\begin{array}{rlr}
\left(\left(2 x^{2}-7\right)-1\right)\left(\left(2 x^{2}-7\right)+1\right)=0 \Rightarrow & \left(2 x^{2}-7-1\right) & (2 x-7+1)=0 \\
x^{2}=\frac{7+1}{2}=\frac{8}{2} & x^{2}=\frac{7-1}{2}=\frac{6}{2} \\
& x= \pm \sqrt{\frac{8}{2}} & x= \pm \sqrt{\frac{6}{2}}
\end{array}
$$

8. Solve $(x+7)^{3}=8$ for x, in the complex numbers domain. (Watch Video 30.)

Solution:

Common Factors: None!
Relationship Between Exponents: Only one term with variable to power 3.
Sulbstitution: $y=x+7$ to change the original equation to $y^{3}-8=0$
Use one of the Types: The difference of cubes.

Factoring and/or Solving for the New Variable:
$y^{3}-8=(y-2)\left(y^{2}+2 y+4\right)=0 \Longrightarrow$

$$
\begin{array}{cc}
y-2=0 & \left(y^{2}+2 y+4\right)=0 \\
\Downarrow & y=\frac{-2 \pm \sqrt{2^{2}-4(1)(4)}}{2(1)} \\
y-2=0 & y=\frac{-2 \pm(2) \sqrt{3} i}{2} \\
\Downarrow & \Downarrow+7=y \Longrightarrow x=\frac{-16 \pm 2 \sqrt{3} i}{2}
\end{array}
$$

Replace Back the Original Variable:
Eliminate Extraneous Solutions: None!
9. Solve $(x-11)^{3}+8=0$ for x, in the complex numbers domain. (Watch Video 31.)

Solution:

Common Factors: None!
Relationship Between Exponents: Only one term with variable to power 3.
Substitution:
$y=x-11$ to change the original equation to $y^{3}+8=0$ Use one of the Types: The sum of cubes.
Factoring and/or Solving for the New Variable:

$$
y^{3}+8=(y+2)\left(y^{2}-2 y+4\right)=0 \Longrightarrow
$$

$$
\begin{array}{cc}
y+2=0 & \left(y^{2}-2 y+4\right)=0 \\
\Downarrow & y=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(4)}}{2(1)} \\
y+2=0 & y=\frac{2 \pm(2) \sqrt{3} i}{2} \\
\Downarrow & \Downarrow \\
x-11=y \Longrightarrow x=9 & x-11_{13}=y \Longrightarrow x=\frac{24 \pm 2 \sqrt{3} i}{2}
\end{array}
$$

Replace Back the Original Variable:
 Eliminate Extraneous Solutions: None!

10. Solve $2 x^{\frac{1}{2}}=18$ for x. (Watch Video 32.)

Solution:

Common Factors: None.
Relationship Between Exponents: $1=2\left(\frac{1}{2}\right)$
Sulstitution: $y=x^{\frac{1}{2}} \Longrightarrow y^{2}=x$ So the original equation becomes $2 y=18$.
Use one of the Types: t linear equation.
Factoring and/or Solving for the New Variable:
$y=\frac{18}{2} \Longrightarrow y=9$
Replace Back the Original Variable:
$y=x^{\frac{1}{2}} \Longrightarrow x^{\frac{1}{2}}=9 \Longrightarrow x=81$
Eliminate Extraneous Solutions: None!

Radical Equations (Precalaulus version.)

Isolate one of the Radicals: Add or subtract terms from both sides of the equation to arrive at a equation with one radical on one side and the rest of the terms on the other side.

Both Sides to Power 2 (or whatever power that neutralizes the radical): Now that one radical is isolated, raise both side to power two. This way one of the radicals will be eliminated. Raising to power 2 for the other side of the equation MAY require a binomial calculation.

Eliminate the Next Radical if any: If the equation had more than one radical term, you may have to repeat the first and the second part.

Solve: When all radicals are eliminated, solve for the desired variable. A quadratic equation or other polynomial may be present at this stage.

Eliminate Extraneous Solutions: This stage of the work is really essential since, by squaring both side of the equation, extraneous solutions may have been produced which we need to eliminate. Plug in the solutions you found in the original equation.

1. Solve $\sqrt{x-5}+4=5$ for x. (Watch Video 35.)

Solution:

Isolate one of the Radicals: $\sqrt{x-5}=1$.
Square Both sides: $x-5=1$
Eliminate the Next Radical if any: Not this time.
Solve: $x=6$
Eliminate Extraneous Solutions: $\mathcal{P l u g}$ in the original: $\sqrt{6-5}+4=5 \sqrt{ }$ So $x=6$ is the solution.
2. Solve $\sqrt{5-t}=4$ for t. (Watch Video 36.)

Solution:

Isolate one of the Radicals: Already done! $\sqrt{5-t}=4$
Square Both Sides: $5-t=16$
Eliminate the Next Radical if any: Not this time.
Solve: $t=-11$
Eliminate Extraneous Solutions: Plug in the original: $\sqrt{5-(-11)}=4$ so $t=-11$ is the solution.
3. Solve $c=5+\sqrt{5-c}$ for c. (Watch Video 37.)

Solution:

Isolate one of the Radicals: $\sqrt{5-c}=c-5$
Square Both Sides: $5-c=(c-5)^{2}$
$\Longrightarrow 5-c=c^{2}-10 c+25$
Eliminate the Next Radical if any: Not this time.
Solve: Common form of guadratics: $c^{2} \underbrace{-9}_{b} c+\underbrace{20}_{c}=0$

$$
c=\frac{9 \pm \sqrt{(-9)^{2}-4(1)(20)}}{2(1)}=\nearrow^{c_{1}=4} \begin{aligned}
& c_{2}=5
\end{aligned}
$$

Eliminate Extraneous Solutions:

Plug in the original and check: for $c_{1}=4$, we get $4 \neq 5+\sqrt{5-4}$ The equality does NOT hold. X
For $c_{2}=5$ we get: $5=5+\sqrt{5-5}$
The solution is $c=5$
This problem has an alternative method of solution:
$\sqrt{5-c}+5-c=0 \quad \Longrightarrow \quad \sqrt{5-c}(\sqrt{5-c}+1) \quad=\quad 0$
Subtract c from both sides Factor the smaller exponent
$\left\{\begin{array}{l}5-c=0 \Longrightarrow c=5 \\ 5-c=-1 \Longrightarrow \mathcal{N}_{0} \text { solution }\end{array}\right.$
4. Solve $r=\sqrt{r-5}+5$ for r. (Watch Video 38.)

Solution:

Isolate one of the Radicals: $\sqrt{r-5}=r-5$
Square Both Sides: $r-5=(r-5)^{2}$
$\Longrightarrow r-5=r^{2}-10 r+25$
Eliminate the Next Radical if any: None this time.
Solve:
Common form of guadratics: $r^{2} \underbrace{-11}_{b} r+\underbrace{30}_{c}=0$

$$
c=\frac{11 \pm \sqrt{(-11)^{2}-4(1)(30)}}{2(1)}=\nearrow^{c_{1}=5} \begin{aligned}
& c_{1}=6
\end{aligned}
$$

Eliminate Extraneous Solutions:

Plug in the original and check: for $c_{1}=6$, we get $6=5+\sqrt{6-5} \sqrt{ }$
For $c_{2}=5$ we get: $5=5+\sqrt{5-5} \quad \checkmark$
The solutions are $r=5$ and 6
This problem has an alternative method of solution:
$\underset{\text { Subtract c from both sides }}{\sqrt{r-5}+5-r} \underset{\text { Factor the smaller cxponent }}{\sqrt{r-5}(\sqrt{r-5}+1)}=0 \Longrightarrow\left\{\begin{array}{l}r-5=0 \Longrightarrow r=5 \\ r-5=1 \Longrightarrow r=6\end{array}\right.$
5. Solve $2 x=\sqrt{6 x+28}$ for x.

Solution:

Isolate one of the Radicals: Radical is already isolated.
Square Both Sides: $4 x^{2}=6 x+28$
Eliminate the Next Radical if any: No other Radical.
Solve: Quadratic form: $4 x^{2}-6 x-28=0$
3.5

Roots are $x=\frac{6 \pm \sqrt{(-6)^{2}-(4)(4)(-28)}}{2(4)}=\nearrow$

So the possible solutions: $x_{1}=\frac{7}{2}$ and $x_{2}=-2$.

Eliminate Extraneous Solutions:

$x_{1}=\frac{7}{2}$, plugging in the original results in $2\left(\frac{7}{2}\right)=\sqrt{6\left(\frac{7}{2}\right)+28}$. This equality holds.
For $x_{2}=-2$, plugging in the original results in $2(-2)=\sqrt{6(-2)+28}$ which does NOT hold because one side is negative and the other side is positive. \boldsymbol{X}
The solution is: $\frac{7}{2}$
6. Solve $b=\sqrt{5 b-6}$ for b. (Watch Video 40.)

Solution:

Isolate one of the Radicals: Radical is already isolated.
Square Both Sides: $b^{2}=5 b-6$
Eliminate the Next Radical if any: No other Radical.
Solve: Quadratic form: $b^{2}-5 b+6=0$

Roots are $b=\frac{5 \pm \sqrt{(-5)^{2}-(4)(1)(6)}}{2(1)}=\nearrow$

So the possible solutions: $b_{1}=3$ and $b_{2}=2$.

Eliminate Extraneous Solutions:

$b_{1}=3$, plugging in the original results in $3=\sqrt{5(3)-6}$. This equality holds. $\sqrt{\text { a }}$
For $x_{2}=2$, plugging in the original results in $2=\sqrt{5(2)-6}$ This equality holds. $ل$
The solutions are: 3,2
7. Solve $\sqrt{6-y}+\sqrt{5 y+6}=6$ for y.

Solution:

Isolate one of the Radicals: $\sqrt{5 y+6}=6-\sqrt{6-y}$
Square Both Sides:
$5 y+6=(6-\sqrt{6-y})^{2} \underset{\text { Binomial Expansion }}{ } 5 y+6=36-12 \sqrt{6-y}+6-y$
$\underset{\text { Simplify }}{\Longrightarrow} 12 \sqrt{6-y}=36-6 y \underset{\text { Simplify }}{\Longrightarrow} 2 \sqrt{6-y}=6-y$
Eliminate the Next Radical if any:
Squarc Both Sides tgain $\Longrightarrow(6-y)=(6-y)^{2} \underset{\text { Binomial Expansion }}{\Longrightarrow} 4(6-y)=36-12 y+y^{2}$

Solve:

The common form of guadratics: $y^{2}-8 y+12=0$
$y=\frac{8 \pm \sqrt{8^{2}-4(1)(12)}}{2(1)} \nearrow_{y_{2}=6}^{y_{1}=2}$
Eliminate Extraneous Solutions: $\mathcal{P l u g}$ in and check. $y=2$ gives $\sqrt{6-2}+$ $\sqrt{5(2)+6}=6 \checkmark y=6$ gives $\sqrt{6-6}+\sqrt{5(6)+6}=6 \checkmark$

- The solutions are $y=2$ and $y=6$

8. Solve $\sqrt{2 x+11}-\sqrt{2 x-5}=2$ for x. (Watch Video 42.)

Solution:

Isolate one of the Radicals: $\sqrt{2 x+11}=\sqrt{2 x-5}+2$
Square Both Sides:
$2 x+11=(\sqrt{2 x-5}+2)^{2} \underset{\text { Binomial Expansion }}{\Longrightarrow} 2 x+11=2 x-5+4 \sqrt{2 x-5}+4$
$\Longrightarrow \sqrt{2 x-5}=3$
Eliminate the Next Radical if any: Sguare Both sides tgain $\quad 2 x-5=3^{2}$
Solve: $x=7$
Eliminate Extraneous Solutions: $\sqrt{2(7)+11}-\sqrt{2(7)-5}=2 \checkmark$
The solution is: $x=7$
9. Solve $\sqrt{m+7}+\sqrt{m-5}=6$ for m. (Watch Video 43.)

Solution:

Isolate one of the Radicals: $\sqrt{m+7}=6-\sqrt{m-5}$
Square Both Sides: $\quad m+7=(6-\sqrt{m-5})^{2} \underset{\text { Binomial Expansion }}{\Longrightarrow} m+7=36-$
$12 \sqrt{m-5}+m-5$
Eliminate the Next Radical if any:
$\sqrt{m-5}=2 \underset{\text { Syuare Both Sides tgain }}{\Longrightarrow} m-5=4$
Solve: $m=9$

Eliminate Extraneous Solutions:

Plug in and check: $\sqrt{9+7}+\sqrt{9-5}=6 \checkmark$
The solution is $m=9$

Substitution Method for solving Equations. (Precalaculus version.)

Common Factors: Look for common factors to factor into simpler factors.
Relationship Between Exponents: Find if one of the exponents is twice or three times the other one. If there are two terms with variables and one exponent is twice the other one, expect a quadratic equation after substitution.

Substitution: The original variable to the smaller exponent becomes the New Variable.

Use one of the Types: At this point expect a quadratic or of the form $A^{2}-B^{2}$ or $A^{3} \pm B^{3}$. Use quadratic formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ or the difference of squares formula $A^{2}-B^{2}=(A-B)(A+B)$ or the sum or difference of cubes formula $A^{3} \pm$ $B^{3}=(A \pm B)\left(A^{2} \mp A B+B^{2}\right)$ to factor.

Factoring and/or Solving for the New Variable: Use each factor including any that may have been obtained in the first step and SOLVE for the New Variable.

Replace Back the Original Variable: For each value that you found, for the new variable, solve for the original variable. List all solutions with comma between them. In case no solution was possible, write NO SOLUTION. On Gateway exam, give all exact solutions (square roots, fractions and so on.) Values such as 2^{5} is accepted as well.

Eliminate Extraneous Solutions: Plug back in the original equation and eliminate any extraneous solution that has been generated in the process.

1. Solve $a^{4}-10 a^{2}=-21$ for a. (Watch Video 44.)

Solution:

Common Factors: \mathcal{N}_{0} common factors.
Relationship Between Exponents: $4=2(2)$ so $a^{4}=\left(a^{2}\right)^{2}$
Substitution: Let $y=a^{2} \Longrightarrow y^{2}=a^{4}$. Replace $y^{2}-10 y=-21$
Use one of the Types: This one has an casy factoring method but I use the guadratic formula.

Factoring and/or Solving for the New Variable:

$$
y=\frac{10 \pm \sqrt{(-10)^{2}-4(1)(21)}}{2(1)}=\searrow_{\substack{y_{2}=7}}^{y_{1}=3}
$$

Replace Back the Original Variable:

$$
\begin{array}{r}
a^{2}=y \Longrightarrow \begin{array}{l}
a^{2}=3 \Longrightarrow a= \pm \sqrt{3} \\
a^{2}=7 \Longrightarrow a= \pm \sqrt{7}
\end{array}
\end{array}
$$

Eliminate Extraneous solutions: All answers work in the original equation.
2. Solve $4 x^{4}=28 x^{2}-49$ for x. (Watch Video 45.)

Solution:

Common Factors: None.
Relationship Between Exponents: $4=2(2) \Longrightarrow\left(x^{2}\right)^{2}=x^{4}$.
Substitution: Let $y=x^{2} \Longrightarrow y^{2}=x^{4}$. So the new equation is $4 y^{2}-28 y+49=$ 0 .

Use one of the Types: Quadratic formula. $4 y^{2}-28 y+49=0$.
Factoring and/or Solving for the New Variable:

$$
\begin{aligned}
y=\frac{28 \pm \sqrt{(-28)^{2}-4(4)(49)}}{2(4)}= & \frac{7}{2} \\
& \Downarrow \\
& \text { Repeated Root }
\end{aligned}
$$

Replace Back the Original Variable:
$y=x^{2} \Longrightarrow x^{2}=\frac{7}{2} \Longrightarrow x= \pm \sqrt{\frac{7}{2}} \checkmark$
Eliminate Extraneous Solutions: None!
3. Solve $2 x^{4}-11 x^{2}-21=0$ for x, in the complex numbers domain.

Solution:

Common Factors: \mathcal{N}_{0} common factors.
Relationship Between Exponents: $4=2(2) \Longrightarrow\left(x^{2}\right)^{2}=x^{4}$.
Sulbstitution: Let $y=x^{2} \Longrightarrow y^{2}=x^{4}$. So the new equation is $2 y^{2}-11 y-21=$ 0 .
Use one of the Types: \&uadratic equation.
Factoring and/or Solving for the New Variable:

$$
y=\frac{11 \pm \sqrt{(-11)^{2}-4(2)(-21)}}{2(2)}=\nearrow_{\substack{y_{1}=7 \\
y_{2}=-\frac{3}{2}}}^{\begin{array}{l}
y_{1}
\end{array}}
$$

Replace Back the Original Variable: $x^{2}=$

Eliminate Extraneous Solutions: $x= \pm \sqrt{7}$ and $x= \pm \sqrt{\frac{3}{2}} i \checkmark$ are the solutions.
4. Solve $3 x^{4}-23 x^{2}+14=0$ for x. (Watch Video 47.)

Solution:

Common Factors: \mathcal{N}_{0} common factors.
Relationship Between Exponents: $4=2(2) \Longrightarrow\left(x^{2}\right)^{2}=x^{4}$.
Substitution: Let $y=x^{2} \Longrightarrow y^{2}=x^{4}$. So the new equation is $3 y^{2}-23 y+14=$ 0 .

Use one of the Types: Quadratic formula.

Factoring and/or Solving for the New Variable:

$$
y=\frac{23 \pm \sqrt{(-23)^{2}-4(3)(14)}}{2(3)}=\searrow^{y_{1}=7} \begin{aligned}
& y_{2}=\frac{2}{3}
\end{aligned}
$$

Replace Back the Original Variable: $x^{2}=y \searrow$

$$
x^{2}=7 \Longrightarrow x= \pm \sqrt{7}
$$

$$
x^{2}=\frac{2}{3} \Longrightarrow x= \pm \sqrt{\frac{2}{3}}
$$

Eliminate Extraneous Solutions: All four solutions are correct.
5. Solve $x^{4}-9 x^{2}+14=0$ for x. (Watch Video 48.)

Solution:

Common Factors: None
Relationship Between Exponents: $4=2(2) \Longrightarrow x^{4}=\left(x^{2}\right)^{2}$
Sulbstitution: Let $y=x^{2} \Longrightarrow y^{2}=x^{4}$ The new equation is $y^{2}-9 y+14=0$.
Use one of the Types: \&uadratic.
Factoring and/or Solving for the New Variable:

$$
\begin{aligned}
& y=\frac{9 \pm \sqrt{(-9)^{2}-4(1)(14)}}{2(1)}=\nearrow^{y_{1}=2} \\
& y_{2}=7
\end{aligned}
$$

Replace Back the Original Variable:

$$
\begin{array}{r}
x^{2}=2 \Longrightarrow x= \pm \sqrt{2} \\
x^{2}=y \\
x^{2}=7 \Longrightarrow x= \pm \sqrt{7}
\end{array}
$$

Eliminate Extraneous Solutions: None.
6. Solve $\left(\frac{g-1}{g}\right)^{2}-10\left(\frac{g-1}{g}\right)+9=0$ for g. (Watch Video 49.)

Solution:

Common Factors: None!
Relationship Between Exponents: $2=2(1)$. Dariable in one term is the square of the variable in the other term.

Substitution:

$y=\frac{g-1}{g}$ By substituting in the original equation, we get $y^{2}-10 y+9=0$
Use one of the Types: \&uadratic formula.
Factoring and/or Solving for the New Variable:

$$
y=\frac{10 \pm \sqrt{(-10)^{2}-4(1)(9)}}{2(1)}=\searrow_{\substack{y_{1}=1 \\ y_{2}=9}}
$$

Replace Back the Original Variable:

$$
\begin{array}{cc}
& \left.\begin{array}{cc}
y=\frac{g-1}{g} & \\
\frac{g-1}{g}=1 & \frac{g-1}{g}=9 \\
\Downarrow & \\
g-1=g & g-1=9 g \\
\Downarrow & \Downarrow \\
0=1 \boldsymbol{X} & -1=8 g \\
\Downarrow & \Downarrow \\
\text { No solution for this one } & g=-\frac{1}{8}
\end{array}\right)
\end{array}
$$

Eliminate Extraneous Solutions: All are correct.
7. Solve $\left(\frac{f+2}{f}\right)^{2}-6\left(\frac{f+2}{f}\right)+5=0$ for f. (Watch Video 50.)

Solution:

Common Factors: None!
Relationship Between Exponents: 2 =2(1). Dariable in one term is the square of the variable in the other term.

Substitution: $y=\frac{f+2}{f}$ By substituting in the original equation, we get $y^{2}-6 y+$ $5=0$
Use one of the Types: \&uadratic formula.
Factoring and/or Solving for the New Variable:

$$
y=\frac{6 \pm \sqrt{(-6)^{2}-4(1)(5)}}{2(1)}=\nearrow_{y_{2}=5}^{y_{1}=1}
$$

Replace Back the Original Variable:

$$
\begin{aligned}
& y=\frac{f+2}{f} \\
& \frac{f+2}{f}=1 \\
& \Downarrow \\
& \frac{f+2}{f}=5 \\
& \Downarrow \\
& f+2=f \\
& \Downarrow \\
& f+2=5 f \\
& \Downarrow \\
& 0=1 X \\
& \Downarrow \\
& \text { No solution for this one. } \\
& 2=4 f \\
& \begin{array}{c}
\Downarrow \\
f=\frac{2}{4}
\end{array}
\end{aligned}
$$

Eliminate Extraneous Solutions: All are correct!
8. Solve $9\left(\frac{x+3}{x}\right)^{2}+6\left(\frac{x+3}{x}\right)+1=0$ for x. (Watch Video 51.)

Solution:

Common Factors: None!
Relationship Between Exponents: 2 2(1). Dariable in one term is the square of the variable in the other term.
Substitution: $y=\frac{x+3}{x}$ By substituting in the original equation, we get $9 y^{2}+$ $6 y+1=0$
Use one of the Types: \&uadratic formula.
Factoring and/or Solving for the New Variable:

$$
y=\frac{-6 \pm \sqrt{(6)^{2}-4(1)(9)}}{2(9)}=\nearrow_{y_{2}=-\frac{1}{3}}^{y_{1}=-\frac{1}{3}}
$$

Replace Back the Original Variable:

$$
\begin{aligned}
& y=\frac{x+3}{x} \\
& \frac{x+3}{x}=-\frac{1}{3} \\
& \Downarrow \\
& x+3=-\frac{1}{3} x \\
& \Downarrow \\
& 3(x+3)=-x \\
& \begin{array}{c}
\frac{x+3}{x}=-\frac{1}{3} \\
\Downarrow
\end{array} \\
& x+3=-\frac{1}{3} x \\
& \Downarrow \\
& 3(x+3)=-x \\
& \Downarrow \\
& x=-\frac{9}{4} \\
& \Downarrow \\
& x=-\frac{9}{4}
\end{aligned}
$$

Eliminate Extraneous Solutions: All are correct!
9. Solve $9\left(\frac{g}{g+1}\right)^{2}-10\left(\frac{g}{g+1}\right)+1=0$ for g. (Watch Video 52.)

Solution:

Common Factors: None!
Relationship Between Exponents: $2=2(1)$. Dariable in one term is the square of the variable in the other term.
Substitution: $y=\frac{g}{g+1}$ By substituting in the original equation, we get $9 y^{2}-$ $10 y+1=0$
Use one of the Types: \&uadratic formula.
Factoring and/or Solving for the New Variable:

$$
y_{1}=1
$$

$y=\frac{10 \pm \sqrt{(-10)^{2}-4(1)(9)}}{2(9)}=\nearrow$

$$
y_{2}=\frac{1}{9}
$$

Replace Back the Original Variable:

$$
y=\frac{g}{g+1}
$$

$$
\begin{gathered}
\frac{g}{g+1}=1 \\
\Downarrow \\
g=g+1 \\
\Downarrow \\
\quad \downarrow
\end{gathered}
$$

$$
0=1 X
$$

\Downarrow
No solution for this one

$$
\begin{gathered}
\frac{g}{g+1}=\frac{1}{9} \\
\Downarrow \\
9 g=(g+1) \\
\Downarrow \\
1=8 g \\
\Downarrow \\
g=\frac{1}{8}
\end{gathered}
$$

Eliminate Extraneous Solutions: All are correct.
10. Solve $25\left(\frac{g}{g+1}\right)^{2}-10\left(\frac{g}{g+1}\right)+1=0$ for g. (Watch Video 53.)

Solution:

Common Factors: None!
Relationship Between Exponents: $2=2(1)$. Dariable in one term is the square of the variable in the other term.
Substitution: $y=\frac{g}{g+1}$ By substituting in the original equation, we get $25 y^{2}-$ $10 y+1=0$
Use one of the Types: \&uadratic formula.
Factoring and/or Solving for the New Variable:
$y=\frac{10 \pm \sqrt{(-10)^{2}-4(1)(25)}}{2(25)}=\frac{1}{5}$ Repeated.
Replace Back the Original Variable:
$\frac{g}{g+1}=\frac{1}{5} \Longrightarrow 5 g=g+1 \Longrightarrow 4 g=1 \Longrightarrow g=\frac{1}{4}$
Eliminate Extraneous Solutions: All are correct!

How to Solve Most Exponential Equations in PreCalculus

Using the Exponential Rules to simplify: If needed, use any of the rules (1) $e^{x} e^{y}=$ e^{x+y}, (2) $\frac{e^{x}}{e^{y}}=e^{x-y}$, (3) $\left(e^{x}\right)^{y}=e^{x y}$, to create single exponential term on each side.

Setting an Equation Using the Exponents of Both Sides: Take logarithm of both side to get an equation without any exponential terms. In this step, you will use the rule $\ln \left(e^{x}\right)=x$.

Solve for the Variable: Solve the equation from previous step.
Extraneous Solutions: Eliminate all solutions that were generate as a result of solving the equation but are not a solution.

How to Solve Most Logarithmic Equations in PreCalculus

Using the Logarithmic Rules to Simplify: If needed, use any of the rules (1) $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$, (2) $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$, (3) $k \log _{b}(x)=$ $\log _{b}\left(x^{k}\right)$, to create single logarithmic term on each side.
Setting an Equation Using the Exponents of Both Sides: Raise the base to power both side to get an equation without any logarithmic terms. In this step, you will use the rule $b^{\log _{b}(x)}=x$.

Solve for the Variable: Solve the equation from previous step.
Extraneous Solutions: Eliminate all solutions that were generate as a result of solving the equation but are not a solution.

1. Solve $2^{12 t+2}=2^{t^{2}+37}$ for t.(Watch Video 55.)

Solution:

Using the Exponential Rules to simplify: Not needed.
Setting an Equation Using the Exponents of Both Sides: $\quad \Longrightarrow \quad 12 t+2=$ $t^{2}+37$

Solve for the Variable: $\Longrightarrow t^{2}-12 t+35=0$
Use quadratic formula $t=\frac{12 \pm \sqrt{(-12)^{2}-4(1)(35)}}{2(1)}=\xlongequal{\square} \begin{aligned} & t_{2}=7 \\ & \\ & \end{aligned}$
2. Solve $7^{10 r+2}=7^{r^{2}} 7^{27}$ for r. (Watch Video 56.)

Solution:

Using the Exponential Rules to simplify: $\left.\begin{array}{cc}7^{10 r+2}= & 7^{r^{2}} 7^{27} \\ \Uparrow \\ 7^{r^{2}+27}\end{array}\right\} \Rightarrow 7^{10 r+2}=$ $7 r^{2}+27$
Setting an Equation Using the Exponents of Both Sides: $\quad \Longrightarrow \quad 10 r+2=$ $r^{2}+27$
Solve for the Variable: $\Longrightarrow r^{2}-10 r+25=0$
Use quadratic formula $\quad r=\frac{10 \pm \sqrt{(-10)^{2}-4(1)(25)}}{2(1)}=5$ repeated.
3. Solve $\left(e^{2 m}\right)^{4 m}=e^{3-2 m}$ for m. (Watch Video 57.)

Solution:

Using the Exponential Rules to simplify: $\left.\begin{array}{c}\left(e^{2 m}\right)^{4 m} \\ e^{8 m^{2}}\end{array}\right\} e^{3-2 m}, ~ \Longrightarrow e^{8 m^{2}}=$ $e^{3-2 m}$.
Setting an Equation Using the Exponents of Both Sides: Jake ln of both sides $\quad 8 m^{2}=$ $3-2 m$
Solve for the Variable: $\Rightarrow 8 m^{2}+2 m-3=0$

Use quadratic formula $\quad m=\frac{-2 \pm \sqrt{2^{2}-4(8)(-3)}}{2(8)}=\xlongequal{m_{2}=\frac{1}{2}} \begin{aligned} &$| $m_{1}=-\frac{3}{4}$ |
| :---: |

\& \end{aligned}
4. Solve $\left(3^{3 x}\right)^{x}=\left(3^{9}\right)^{x}$ for x. (Watch Video 58.)

Solution:

Using the Exponential Rules to simplify:
$\left.\begin{array}{ccc}\left(3^{3 x}\right)^{x} & = & \left(3^{9}\right)^{x} \\ \Uparrow & \Uparrow \\ 3^{3 x^{2}} & = & 3^{9 x}\end{array}\right\} \Longrightarrow 3^{3 x^{2}}=3^{9 x}$
Setting an Equation Using the Exponents of Both Sides: ${\mathcal{J a k e ~} \log _{3} \text { of both sides }}_{\Longrightarrow}^{\Longrightarrow} 3 x^{2}=9 x$
Solve for the Dariable: $\Longrightarrow 3 x^{2}-9 x=0$
Subtract $9 x$ and Factor 3x $3 x(x-3)=0 \xrightarrow{x_{1}=0}$
5. Solve $\ln (3 x-5)=\ln (17)+\ln (2)$ for x. (Watch Video 59.)

Solution:

Using the Logarithmic Rules to Simplify: $\ln (3 x-5)=\ln (34)$
Setting an Equation Using the Exponents of Both Sides: $\Longrightarrow e^{\ln (3 x-5)}=e^{\ln (34)} \Longrightarrow$ $3 x-5=34$
Solve for the Dariable: $\Rightarrow 3 x=39 \Longrightarrow x=13$
6. Solve $\ln (x+5)-\ln (x)=1$ for x. (Watch Video 60.)

Solution:

Using the Logarithmic Rules to Simplify: $\ln \left(\frac{x+5}{x}\right)=1$
Setting an Equation Using the Exponents of Both Sides: $\Longrightarrow e^{\ln \left(\frac{x+5}{x}\right)}=e^{1}$
$\Longrightarrow\left(\frac{x+5}{x}\right)=e$
Solve for the Dariable: $\Longrightarrow x+5=e x \Longrightarrow(e-1) x=5 \Longrightarrow x=\frac{5}{e-1}$
7. Solve $\ln (x)=\ln (8)-2 \ln (x)$ for x. (Watch Video 61.)

Solution:

Using the Logarithmic Rules to Simplify:

$$
\ln (x)=\ln (8)-\underbrace{2 \ln (x)}_{\ln \left(x^{2}\right)})
$$ $\left.\begin{array}{c}\Uparrow_{\ln \left(x^{2}\right)}^{\ln \left(\frac{8}{x^{2}}\right)}\end{array}\right\} \Longrightarrow \ln (x)=$

$\ln \left(\frac{8}{x^{2}}\right)$
Setting an Equation Using the Exponents of Both Sides: $\Longrightarrow e^{\ln (x)}=e^{\ln \left(\frac{8}{x^{2}}\right)}$ $\Longrightarrow x=\left(\frac{8}{x^{2}}\right)$
Solve for the Dariable: $\Rightarrow x^{3}=8 \Longrightarrow x=2$
8. Solve $\ln (4 p)+\ln \left(p+\frac{7}{4}\right)=\ln$ (2) for p. (Watch Video 62.)

Solution:

$$
\begin{aligned}
& \underbrace{\ln (4 p)+\ln \left(p+\frac{7}{4}\right)}_{\ln \left(4 p\left(p+\frac{7}{4}\right)\right)}=\ln (2) \\
& \underbrace{\ln \left(4 p^{2}+7 p\right)}_{\ln \left(4 p^{2}+7 p\right)=\ln (2)}
\end{aligned}
$$

Setting an Equation Using the Exponents of Both Sides: $\Longrightarrow e^{\ln \left(4 p^{2}+7 p\right)}=e^{\ln (2)}$
$\Longrightarrow 4 p^{2}+7 p=2$
Solve for the Variable: $\Longrightarrow 4 p^{2}+7 p-2=0$

$$
\Longrightarrow p=\frac{-7 \pm \sqrt{7^{2}-(4)(4)(-2)}}{2(4)} \nearrow \begin{aligned}
& p_{1}=-2 \boldsymbol{X} \Longleftarrow \text { Not in the domain } \\
& p_{2}=\frac{1}{4}
\end{aligned}
$$

9. Solve $\ln (3 x)+\ln \left(x-\frac{2}{3}\right)=\frac{1}{2} \ln (64)$ for x. (Watch Video 63.)

Solution:

Setting an Equation Using the Exponents of Both Sides: $\Longrightarrow e^{\ln \left(3 x^{2}-2 x\right)}=e^{\ln (8)}$
$\Longrightarrow 3 x^{2}-2 x=8$
Solve for the Variable: $\Rightarrow 3 x^{2}-2 x-8=0$

$$
\Longrightarrow x=\frac{2 \pm \sqrt{(-2)^{2}-(4)(3)(-8)}}{2(3)} \nearrow \text { Not in the domain }
$$

Function Operations

- $f+g$ means add the outputs.
- $f-g$ means subtract the outputs.
- $f . g$ means multiply the outputs.
- f / g means divid the outputs.
- Identify the outer and inner function. For example in $f \circ g, f$ is the outer and g is the inner function.
- Write the outer and write big parentheses whenever you see the independent variable.
- Write the inner function in every parentheses.

1. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $(f-g)(9)$. (Watch Video 64.)

Solution: $(f-g)(9)=(9)^{2}+2-(\sqrt{(9)}-2)=81+2-3+2=82$
2. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $(f+g)(9)$. (Watch Video 65.)

Solution: $(f+g)(9)=(9)^{2}+2+(\sqrt{(9)}-2)=81+2+3-2=\boxed{84}$
3. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $(g-f)(9)$. (Watch Video 66.)

Solution: $(g-f)(9)=\sqrt{(9)}-2-\left((9)^{2}+2\right)=3-2-81-2=\square$
4. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $\left(\frac{g}{f}\right)(a)$. (Watch Video 67.)

Solution: $\left(\frac{g}{f}\right)(a)=\frac{(\sqrt{(a)}-2)}{(a)^{2}+2}=\frac{\sqrt{a}-2}{a^{2}+2}$
5. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $(g f)(x)$. (Watch Video 68.)

Solution: $(g f)(x)=(\sqrt{x}-2)\left(x^{2}+2\right)=(\sqrt{x}-2)\left(x^{2}+2\right)$
6. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $3 g(c)$. (Watch Video 69.)

Solution: $3 g(c)=3(\sqrt{(c)}-2))=3 \sqrt{c}-6$
7. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $2 f(1)$. (Watch Video 70.)

Solution: $2 f(1)=2\left((1)^{2}+2\right)=6$
8. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $g(f(x))$.(Watch Video 71.)

Solution: $g(f(x))=\sqrt{x^{2}+2}-2=\sqrt{x^{2}+2}-2$
9. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $g(f(x+y))$. (Watch Video 72.)

Solution: $g(f(x+y))=\sqrt{(x+y)^{2}+2}-2=\sqrt{x^{2}+y^{2}+2 x y+2}-2$
10. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $g(f(\sqrt{2})$). (WatchVideo 73.)

Solution: $g(f(\sqrt{2}))=\sqrt{(\sqrt{2})^{2}+2}-2=\sqrt{4}-2$
11. Given $f(x)=x^{2}+2$ and $g(x)=\sqrt{x}-2$, find the value of $f(g(a+h)$. (Watch Video 74.)

Solution: $f(g(a+h))=\left((\sqrt{a+h}-2)^{2}+2\right.$

Composition of Functions

- Identify the outer and inner function. For example in $f \circ g, f$ is the outer and g is the inner function.
- Write the outer and write big parentheses whenever you see the independent variable.
- Write the inner function in every parentheses.

1. Given $g(x)=\frac{1}{x+3}$ and $f(x)=\sqrt{x}$, find $f(g(x))$. (Watch Video 75.)

Solution: $f(g(x))=\sqrt{\frac{1}{x+3}}$
2. Given $g(x)=\frac{x-1}{x+1}$ and $f(x)=x^{2}$, find $f(g(x))$. (Watch Video 76.)

Solution: $f(g(x))=\left(\frac{x-1}{x+1}\right)^{2}$
3. Given $g(x)=\frac{3}{x}-x$ and $f(x)=\frac{x}{3}+x$, find $f(g(x))$.(Watch Video 78.)

Solution: $\mathcal{N o t e : ~} f(x) \underset{\text { Factor } x}{ }=x\left(\frac{1}{3}+1\right)=\frac{4}{3} x$
$f(g(x))=\frac{4}{3}\left(\frac{3}{x}-x\right)=\frac{4}{x}-\frac{4 x}{3}$
4. Given $f(x)=\frac{3}{x}-x$ and $g(x)=\frac{x}{3}+x$, find $f(g(x))$. (Watch Video 79.)

Solution: Note: $g(x)_{\text {Factor } x}=x\left(\frac{1}{3}+1\right)=\frac{4}{3} x$
$f(g(x))=\frac{3}{\left(\frac{4 x}{3}\right)}-\left(\frac{4 x}{3}\right)=\frac{9}{4 x}-\frac{4 x}{3}$
5. Given $f(x)=x^{2}+4 x-5$ and $g(x)=x-c$, find $f(g(x))$. (Watch Video 80.)

Solution: $f(g(x))=(x-c)^{2}+4(x-c)-5=\left(x^{2}-2 c x+c^{2}\right)+(4 x-4 c)-5=$ $x^{2}+(4-2 c) x+\left(c^{2}-4 c-5\right)$
6. Given $g(x)=5 x^{2}-2$ and $f(x)=\sqrt{x}+1$, find $f(g(x))$. (Watch Video 81.)

Solution: $f(g(x))=\sqrt{\left(5 x^{2}-2\right)}+1=\sqrt{5 x^{2}-2}+1$
7. Given $g(x)=\sqrt{x^{2}-5 x}$ and $f(x)=x^{2}+1$, find $f(g(x))$. (Watch Video 82.)

Solution: $f(g(x))=\left(\sqrt{x^{2}-5 x}\right)^{2}+1=x^{2}-5 x+1$
8. Given $f(x)=3 x-2$ and $g(x)=x+1$, find $f(g(x))$. (Watch Video 83.)

Solution: Note:
$f(g(x))=3(x+1)-2=3 x+1$
9. Given $f(x)=x^{2}+x^{\frac{1}{2}}$ and $g(x)=x^{4}$, find $f(g(x))$. (Watch Video 84.)

Solution: $f(g(x))=\left(x^{4}\right)^{2}+\left(x^{4}\right)^{\frac{1}{2}}=x^{8}+x^{2}$
10. Given $f(x)=x^{\frac{1}{3}}+x^{\frac{1}{2}}$ and $g(x)=x^{3}$, find $f(g(x))$. (Watch Video 85.)

$$
\text { Solution: } f(g(x))=\left(x^{3}\right)^{\frac{1}{3}}+\left(x^{3}\right)^{\frac{1}{2}}=x+x^{\frac{3}{2}}
$$

How to Find the Rule of Inverse Function

- Choose an output variable and set equal to the rule of the function. (For example, $y=f(x)$.)
- Solve for the input variable. (For example, x.)
- Interchange the input variable and output variable.

1. Find the inverse function of $f(x)=\frac{1}{5 x+3}$. (Watch Video 86.)

Solution:

$$
\begin{aligned}
& f=\frac{1}{5 x+3} \text { Multiply both sides by the denominator } \\
& \qquad x f+3 f=1 \underset{\text { Group terms with } x}{\Longrightarrow} 5 x f=1-3 f \\
& \underset{\text { Factor } x}{\Longrightarrow} x(5 f)=1-3 f \underset{\text { Solve }}{\Longrightarrow} x=\frac{1-3 f}{5 f} \underset{\text { Jnterchange variables }}{\Longrightarrow} f^{-1}(x)=\frac{1-3 x}{5 x}
\end{aligned}
$$

2. Find the inverse function of $f(s)=\frac{-2}{5 s+3}$. (Watch Video 87.)

Solution:

$$
\begin{aligned}
& f=\frac{-2}{5 s+3} \text { Multiply both sides by the denominator }_{\Longrightarrow} 5 s f+3 f=-2 \underset{\text { Group terms with } s}{\Longrightarrow} 5 s f=-2-3 f \\
& \underset{\text { Factor } s}{\Longrightarrow} s(5 f)=-2-3 f \underset{\text { Solve }}{\Longrightarrow} s=\frac{-2-3 f}{5 f} \underset{\text { Jnterchange variables }}{\Longrightarrow} f^{-1}(s)=\frac{-2-3 s}{5 s}
\end{aligned}
$$

3. Find the inverse function of $m(t)=\frac{3 t+7}{5 t}$. (Watch Video 88.)

Solution:

$$
\begin{aligned}
& m=\frac{3 t+7}{5 t} \text { Multiply both sides by the denominator }_{\Longrightarrow} 5 t m=3 t+7 \underset{\text { Group terms with } t}{\Longrightarrow} 5 t m-3 t=7 \\
& \underset{\text { Factor } t}{\Longrightarrow} t(5 m-3)=7 \underset{\text { Solve }}{\Longrightarrow} t=\frac{7}{5 m-3} \underset{\text { Jnterchange variables }}{\Longrightarrow} m^{-1}(t)=\frac{7}{5 t-3}
\end{aligned}
$$

4. Find the inverse function of $v(t)=\frac{2 t+3}{5 t-7}$. (Watch Video 89.)

Solution:

$$
\begin{aligned}
& v=\frac{2 t+3}{5 t-7} \text { Multiply both sides by the derominator } \\
& 3+7 v \\
& \underset{\text { Factor } t}{\Longrightarrow} t(5 v-2)=3+7 v \underset{\text { Solve }}{\Longrightarrow} t=\frac{3+7 v}{5 v-2} \underset{\text { Intercharge variables }}{\Longrightarrow} v^{-1}(t)=\frac{3+7 t}{5 t-2}
\end{aligned}
$$

5. Find the inverse function of $g(t)=\frac{2}{3 t-5}$. (Watch Video 90.)

Solution:

$$
\begin{aligned}
& g=\frac{2}{3 t-5} \text { Multiply both sides by the derominator } 3 t g-5 g=2 \underset{\text { Group terms woith } t}{\Longrightarrow} 3 t g=2+5 g \\
& \underset{\text { factor } t}{\Longrightarrow} t(3 g)=2+5 g \underset{\text { Solve }}{\Longrightarrow} t=\frac{2+5 g}{3 g} \underset{\text { Jnterchange variables }}{\Longrightarrow} g^{-1}(t)=\frac{5 t+2}{3 t}
\end{aligned}
$$

6. Find the inverse function of $y(x)=\frac{x^{3}-3}{x^{3}+7}$. (Watch Video 91.)

Solution:

$$
\begin{aligned}
& y=\frac{x^{3}-3}{x^{3}+7} \text { Multiply both sides by the denominator } \quad x^{3} y+7 y=x^{3}-3 \underset{\text { Group terms with } x^{3}}{\Longrightarrow} x^{3} y- \\
& x^{3}=-3-7 y \\
& \underset{\text { Factor } x^{3}}{\Longrightarrow} x^{3}(y-1)=-3-7 y \underset{\text { Solve }}{\Longrightarrow} x^{3}=\frac{-3-7 y}{y-1} \Longrightarrow x=\sqrt[3]{\frac{-3-7 y}{y-1}} \\
& \text { Interchange variables } y^{-1}(x)=\sqrt[3]{\frac{-3-7 x}{x-1}}
\end{aligned}
$$

7. Find the inverse function of $f(x)=\sqrt{2 x+3}$. (Watch Video 92.)

Solution:

$$
\begin{aligned}
& f=\sqrt{2 x+3} \underset{\text { Both side to power } 2}{\Longrightarrow} f^{2}=2 x+3 \underset{\text { Group all terms with } x}{\Longrightarrow} 2 x=f^{2}-3 \\
& \underset{\text { Solve for } x}{\Longrightarrow} x=\frac{f^{2}-3}{2} \underset{\text { Interchange the variables }}{\Longrightarrow} f^{-1}(x)=\frac{x^{2}-3}{2}
\end{aligned}
$$

8. Find the inverse function of $u(t)=\frac{7}{\sqrt{3 t}}$. (Watch Video 93.)

Solution:

$$
\begin{aligned}
& u=\frac{7}{\sqrt{3 t}} \text { Both sides to power 2 } \quad u^{2}=\frac{7^{2}}{3 t} \text { Multiply both sides by the denominator } \Longrightarrow t^{2}=49 \\
& \underset{\text { Solve for } t}{\Longrightarrow} t=\frac{49}{3 u^{2}} \quad \underset{\text { Interchange the variables }}{\Longrightarrow} u^{-1}(t)=\frac{49}{3 t^{2}}
\end{aligned}
$$

9. Find the inverse function of $g(y)=\sqrt{5 y}+2$. (Watch Video 94.)

Solution:

$g=\sqrt{5 y}+2 \underset{\text { Joslatet the radicial }}{\Rightarrow} \sqrt{5 y}=g-2 \underset{\text { Both sidus to powec 2 }}{\Rightarrow} 5 y=(g-2)^{2}$
$\underset{\text { Solve for } y}{\Longrightarrow} y=\frac{(g-2)^{2}}{5} \underset{\text { Jnterchange the variables }}{\Longrightarrow} g^{-1}(y)=\frac{(y-2)^{2}}{5}$
10. Find the inverse function of $u(r)=7+\sqrt{3 r-5}$. (Watch Video 95.)

Solution:

$$
\begin{aligned}
& u=7+\sqrt{3 r-5} \underset{\text { Jsolate the radical }}{\Longrightarrow} \sqrt{3 r-5}=u-7 \underset{\text { Both sides to polver 2 }}{\Longrightarrow} 3 r-5=(u-7)^{2} \\
& \underset{\text { Solve for } u}{\Longrightarrow} y=\frac{(u-7)^{2}+5}{3} \underset{\text { Intercharge the variables }}{\Longrightarrow} u^{-1}(y)=\frac{(r-7)^{2}+5}{3}
\end{aligned}
$$

Simplifying Rational Expression

Simplifying extra factor:

Factor both numerator and denominator.
Simplify the common factors.

Simplifying the Sum of Rational Expressions:

Make sure each expression is simplified. (Within the expression's domain.)
Find the least common denominator. This is going to be the new denominator.
Multiply all rational piece to make the new numerator.
After forming the new fraction, check if it can be simplified again.

1. Simplify, within its domain, as much as possible $\frac{\left(x^{2}+1\right)(x-1)^{2}}{x^{4}-1}$. (Watch Video 96.)

Solution:

$$
\text { Within the domain } x \neq \pm 1 \text { : }
$$

$\frac{\left(x^{2}+1\right)(x-1)^{2}}{x^{4}-1}$ Factor using the differernce of syuares formula $A=x^{2}$ and $B=1 . \frac{\left(x^{2}+1\right)(x-1)^{2}}{\left(x^{2}-1\right)\left(x^{2}+1\right)}$
Factor using the difference of syuares formula $A=x$ and $B=1 . \quad \frac{\left(x^{2}+1\right)(x-1)^{2}}{(x-1)(x+1)\left(x^{2}+1\right)} \quad \begin{aligned} & (x-1) \\ & \frac{(x+1)}{=}\end{aligned}$
2. Simplify, within its domain, as much as possible $\frac{x y+3 z y}{x^{2}+6 x z+9 z^{2}}$. (Watch Video 97.)

Solution:

$$
\text { Where } x \neq-2 z:
$$

$$
\begin{gathered}
\frac{x y+3 z y}{x^{2}+6 x z+9 z^{2}} \text { factor the numerator. } \frac{y(x+3 z)}{x^{2}+6 x z+9 z^{2}} \\
= \\
\text { Use the binomial formula to factor: } \frac{y(x+3 z)}{(x+3 z)^{2}}=\frac{y}{x+3 z}
\end{gathered}
$$

3. Simplify, within its domain, as much as possible $\frac{x^{2}+x y}{x^{2}+x y-4 x-4 y}$. (Watch Video 98.)

Solution:

$$
\begin{aligned}
& \text { Where } x \neq-y \text { and } x \neq 4 \text { : } \\
& \frac{x^{2}+x y}{x^{2}+x y-4 x-4 y} \text { factor the numerator. } \frac{x(x+y)}{x^{2}+x y-4 x-4 y} \\
& =\frac{x(x+y)}{(x+y)(x-4)}=\frac{x}{x-4}=\frac{x(x+y)}{x-4}
\end{aligned}
$$

4. Simplify, within its domain, as much as possible $\frac{2 x^{3}-4 x^{2}+x-2}{x-2}$. (Watch Video 99.)

Solution:

Within its domain $x \neq 2$:
$\frac{2 x^{3}-4 x^{2}+x-2}{x-2}$
$=2 x^{2}+1$
5. Simplify, within its domain, as much as possible $\frac{x^{3}+5 x^{2}+6 x}{x^{3}-9 x}$. (Watch Video 100.)

Solution:

Domain: $x \neq 0, x \neq \pm 3$

$$
\begin{aligned}
& \frac{x^{3}+5 x^{2}+6 x}{x^{3}-9 x} \text { Factor the } x \text { out of rumerator and denominator. } \quad \frac{\not x\left(x^{2}+5 x+6\right)}{\not x\left(x^{2}-9\right)}=\frac{x^{2}+5 x+6}{x^{2}-9} \\
& \text { Factor the numerator using quadratic formula. } \frac{(x+3)(x+2)}{x^{2}-9} \\
& \text { Factor the denominator using the difference of squares. } A=x \text { and } B=3 \cdot \frac{(x+3)(x+2)}{(x+3)(x-3)}=\overline{x+2}
\end{aligned}
$$

6. Combine the rational expressions and simplify as much as possible $\frac{2}{x+3}+\frac{2}{x-3}+$ $\frac{1}{x^{2}-9}$. (Watch Video 101.)

Solution:

The least common denominator is $(x-3)(x+3)=$ The derominator $_{x^{2}-9}$.
The numerator is $\left(\frac{2}{x+3}+\frac{2}{x-3}+\frac{1}{x^{2}-9}\right)\left(x^{2}-9\right)$
Simplify:
$=\frac{2\left(x^{2}-9\right)}{x+3}+\frac{2\left(x^{2}-9\right)}{x-3}+\frac{x^{2}-9}{x^{2}-9}=\frac{2(x-3)(x+3)}{x+3}+\frac{2(x-3)(x+3)}{x-3}+1$
$=2 x-(2)(3)+2 x+(2)(3)+1=\underbrace{4 x+1}_{\text {The numerator }}$
The answer is $\frac{4 x+1}{x^{2}-9}$
7. Combine the rational expressions and simplify, within the domain, as much as possible $\frac{-1}{x}+\frac{2}{x^{2}+1}+\frac{1}{x^{3}+x}$. (Watch Video 102.)

Solution:

The least common denominator is $x\left(x^{2}+1\right)=\underbrace{x^{3}+x}_{\text {The denominator }}$
The numerator is $\left(\frac{-1}{x}+\frac{2}{x^{2}+1}+\frac{1}{x^{3}+x}\right)\left(x^{3}+x\right)$

Simplify:

$=\frac{-\left(x^{3}+x\right)}{x}+\frac{2\left(x^{3}+x\right)}{x^{2}+1}+\frac{x^{3}+x}{x^{3}+x}=\frac{-\not x\left(x^{2}+1\right)}{x}+\frac{2 x\left(x^{2}+1\right)}{x^{2}+1}+1$
$=-x^{2}-1+2 x+1=\underbrace{-x^{2}+2 x}_{\text {The numerator }}$
So the expression is simplifying to $\frac{-x^{2}+3 x}{x^{3}+x}$ but we are not done since this can be simplified.
$\frac{-x^{2}+2 x}{x^{3}+x}=\frac{\not x(-x+2)}{\not x\left(x^{2}+1\right)}$
The answer is $\frac{-x+2}{x^{2}+1}$
8. Combine the rational expressions and simplify as much as possible $\sqrt{8 x-1}-\frac{x+2}{\sqrt{8 x-1}}$. (Watch Video 103.)

Solution:

The least common denominator is $\underbrace{\sqrt{8 x-1}}_{\text {The derominator }}$.
The numerator is $\left(\sqrt{8 x-1}-\frac{x+2}{\sqrt{8 x-1}}\right)(\sqrt{8 x-1})$
Simplify:
$8 x-1-\frac{(x+2)(\sqrt{8 x-1})}{(\sqrt{8 x-1})}=8 x-1-(x+2)=8 x-1-x-2=\underbrace{7 x-3}_{\text {The numerator }}$
The answer is $\frac{7 x-3}{\sqrt{8 x-1}}$
9. Combine the rational expressions and simplify as much as possible $\frac{x}{x+y}-\frac{y}{x}$. (Watch Video 104.)

Solution:

The least common denominator is $x(x+y)=\underbrace{x^{2}+x y}_{\text {The denominator }}$.
The numerator is $\left(\frac{x}{x+y}-\frac{y}{x}\right)(x(x+y))$
Simplify:
$=\frac{x(x(x+y))}{(x+y)}-\frac{y(x(x+y))}{x}=x^{2}-y(x+y)=x^{2}-x y-y^{2}=\underbrace{x^{2}-x y-y^{2}}_{\text {The numerator }}$
The answer is $\frac{x^{2}-x y-y^{2}}{x^{2}+x y}$
10. Combine the rational expressions and simplify as much as possible $\frac{x+h}{x+h+1}-\frac{x}{x+1}$. (Watch Video 105.)

Solution:

The least common denominator is $\underbrace{(x+1)(x+h+1)}_{\text {The denominator }}$.
The numerator is $\left(\frac{x+h}{x+h+1}-\frac{x}{x+1}\right)(x+1)(x+h+1)$
Simplify:
$=\frac{(x+h)(x+1)(x+h+1)}{x+h+1}-\frac{x(x+1)(x+h+1)}{x+1}=(x+h)(x+1)-x(x+h+1)=$
$x^{2}+h x+x+h-x^{2}-x h-x=\underbrace{h}_{\text {The numerator }}$
The answer is $\frac{h}{(x+1)(x+h+1)}$

